
Simulation of a Turbulent Flow Subjected to
Favorable and Adverse Pressure Gradients

Dr. Ali Uzun
National Institute of Aerospace, Hampton, Virginia

&
Dr. Mujeeb R. Malik

NASA Langley Research Center, Hampton, Virginia

Advanced Modeling & Simulation Seminar Series
20 August 2020

Introduction & Motivation

Ø Flows subjected to pressure gradients are hard to predict using lower-fidelity
simulation tools based on various turbulence models
§ Reynolds-averaged Navier-Stokes (RANS) and wall-modeled Large-Eddy Simulation

(WMLES) methods are not completely satisfactory
Ø A new benchmark test case called the “speed bump” has been proposed to

further investigate flows subjected to pressure gradients
§ Gaussian profile that generates favorable and adverse pressure gradients
§ A detailed experimental investigation campaign is planned in near future

Ø We perform a direct numerical simulation (DNS) for the speed bump flow using a
new flow solver developed for graphics processing units (GPUs)

Ø This talk reports the findings from our DNS results

2

3-D Speed Bump Geometry

Ø Full geometry is defined by the following equation :
𝑦 𝑥, 𝑧 = 0.5ℎ[1 + erf((0.5L − 2𝑧! − 𝑧)/𝑧!)] exp[−(𝑥/𝑥!)"]
where ℎ = 0.085𝐿, 𝑥! = 0.195𝐿, 𝑧! = 0.06𝐿

𝐿 is the span, side walls are at: ⁄𝑧 𝐿 = ±0.5, ceiling is at: ⁄𝑦 𝐿 = 0.5

3

3-D geometry in tunnel

side view

cross-section

Direct Numerical Simulation Methodology

Ø New flow solver developed exclusively for graphics processing units (GPUs)
Ø Compressible flow equations in generalized curvilinear coordinates
Ø Fully explicit schemes made up of many independent multiply-add type

operations at which the GPU excels :
§ Optimized explicit 4th-order finite-difference with 6th-order filtering scheme for stability
§ 3rd-order, three-stage, explicit Runge-Kutta time integration scheme
§ 2nd-order, single-stage, Adams-Bashforth time integration scheme with improved stability

Ø Hybrid combination of CUDA Fortran + MPI + OpenMP :
§ CUDA Fortran to launch computational kernels on the GPU
§ Host-assisted MPI communication among GPUs (“GPU-aware MPI” performance is very poor)
§ OpenMP for running multiple threads on the host CPU

• Master thread controls the GPU and launches the kernels
• 6 helper threads handle the MPI communication (one thread per face of a mesh block)

4

GPU Code Performance

Ø GPU code provides a ~7.5x speedup over our CPU code :
§ Comparison between one Intel Skylake node with 40 cores and one NVIDIA Tesla V100 GPU

with 16 Gigabytes of global memory
§ These hardware are similar in price and power consumption
§ Based on the shortest time taken to run a problem over a given physical time interval

Ø CPU code uses :
§ High-order compact finite-difference schemes (which require a scalar tridiagonal solver)
§ Explicit (third-order Runge-Kutta) or implicit (Beam-Warming) time integration schemes
§ Same explicit scheme also used in the GPU code
§ Max CFL number of about 1.3 with the explicit time integration scheme
§ Max CFL number of about 5 for time accuracy with the implicit time integration scheme

Ø CPU code is fairly-well optimized for Intel CPUs
5

GPU Code Parallel Scaling

Ø MPI communication is very slow compared to GPU computation :
§ If assigned too little work, the GPUs would sit idle while waiting for MPI to catch up
§ Poor strong-scaling performance because of slow communication relative to computation
§ To make the best use of limited resources, we assign the maximum possible workload to the

GPU and overlap as much communication with computation
§ In other words, we try to minimize the total node-hours, rather than the wall-clock run time

Ø We assign max workload to the GPU by maxing out the available memory :
§ Nearly 50 million points per 32 Gigabytes of memory on a NVIDIA Tesla V100 GPU
§ All data arrays are stored in the GPU memory
§ Chosen explicit schemes allow decoupling of points near block interfaces from interior points
§ Host-assisted MPI communication is overlapped with GPU computation
§ Multiple OpenMP threads running on the host CPU handle the MPI communication
§ Overlapping strategy leads to complicated code structure 6

Weak-Scaling Performance on Summit

Ø Test runs were performed with 142 million points per Summit node
§ Summit has 6 V100 GPUs per node, each with 16 Gigabytes of memory

Ø Number of nodes is increased while keeping the number of points per node fixed

Ø About one nanosecond per grid point per Summit node per time time step
7

to another. We therefore see a slight variation in the average time per step as the number of nodes changes. The
average time per step is nearly constant and remains between 149 and 150 milliseconds. This is the payoff for utilizing
a strategy that assigns a large workload to the GPU and overlaps GPU computation with MPI communication as much
as possible. The “mean” value of the time taken per step (i.e., the value averaged over all node-count runs) is about
149.5 milliseconds for the given grid block size per GPU. This corresponds to roughly one nanosecond per grid point
per Summit node per time step.

Number of Summit nodes
101 102 103

149

150

tstep

tstep = average time per step (milliseconds)

mean

Fig. 30 Weak scaling performance on the Summit system.

The overall performance of the GPU code was measured to be 10% of the peak theoretical double-precision
performance of the V100 GPU, which is rated at 7.8 Tera-floating-point-operations (TFLOPs) per second. The most
compute-intensive individual kernels (or subroutines) were found to achieve as high as 17% of the peak. To determine
the performance limiting factor, the code was profiled using the available performance analysis tools. For a grid block
of about 24 million points per GPU, it was found that, at each time step, the code moves about 71 Gigabytes worth
of total data from the global memory to the registers of the processing units, and about another 39 Gigabytes worth
of total computed data from the registers back to the global memory. Thus, there is a data movement of about 110
Gigabytes at each time step, between the global memory and the registers. Now, in order to illustrate what limits the
code performance, suppose the code only moves this much data between the main memory and registers, but does not
do any computing at all. How long would this data movement alone take? To answer this question, we first note that
the V100 GPU architecture provides 900 Gigabytes/second of peak memory bandwidth. For simplicity, let us assume
that the data movement takes place at the peak bandwidth. That would mean that at least 110/900 ≈ 0.122 seconds
would be needed to move that amount of data. Our profiling measurements show that the most compute-intensive
kernels generally achieve about 80 to 90% of the peak memory bandwidth, so the actual data movement takes a bit
longer than this estimate. With an overall average rate of 85% of the peak bandwidth, the data movement would take
about 0.144 seconds. We also know that for the given grid block size per GPU, the code takes about 0.15 seconds to
perform all operations and advance the simulation for one time step. The profiling measurements show that the actual
compute time is around 19% of the total elapsed time. Even though the actual computations overlap with the memory
operations, the data movement between the memory and registers still constitutes a significant chunk of the time taken
per computational time step according to the above timings. These observations lead us to the conclusion that our code
performance is bound by the available memory bandwidth. In other words, the memory bandwidth is not sufficient to
transfer data into and out of the registers at the rate demanded by the processing units. Thus, the well-known adage of
the computer science world, “The FLOPs are free, you are paying for the memory bandwidth!” is still very much valid
in our case.

As noted above, with about 80 to 90% of the peak memory bandwidth achieved by the most compute-intensive
kernels, our memory-bound GPU code is not far off from its maximum possible performance; hence, reaching a much
greater percentage of the peak theoretical FLOPs per second performance of the V100 architecture is not feasible. We
anticipate that potential memory bandwidth improvements in future-generation GPU architectures should enable our
code to achieve higher FLOP counts per second on those systems.

B. Performance Comparison to CPU Flow Solver
We now provide the performance comparison between this new GPU code and our previous CPU code, which was

most recently used in the simulation of flow separation problems [8, 9]. The speedup factors depend on how exactly
the comparisons are made. For example, the “node-to-node” speedup factor, which is derived from the performance

29

Spanwise-Periodic DNS Schematic

Ø Limited resources constrain us to spanwise-periodic DNS, with span set to 0.04𝐿
Ø Reynolds number (based on upstream velocity and 𝐿) = 1 million

§ Inflow momentum-thickness Reynolds number, 𝑅𝑒! ≈ 530; at ⁄𝑥 𝐿 = −0.4, 𝑅𝑒! ≈ 1600
Ø Freestream Mach number = 0.2 (close to the expected experimental value)
Ø RANS data to set up mean inflow and top plane boundary conditions
Ø Turbulent inflow generation based on the recycling/rescaling method
Ø Viscous isothermal boundary condition on lower wall
Ø Sponge zone with characteristic boundary condition on outflow boundary

8

Contours denote the
instantaneous pressure
normalized by reference
value

Direct Numerical Simulation Details

Ø 2.265 billion grid points total
Ø Grid resolutions in wall units are discussed on the next slide
Ø Optimized explicit 4th-order finite-difference with 6th-order filtering scheme
Ø 3rd-order, three-stage, explicit Runge-Kutta time integration scheme
Ø 750,000 steps to compute a time interval of ⁄𝐿 𝑈# (max CFL number of 0.86)
Ø 48 NVIDIA V100 GPUs at NAS, each with 32 GB memory, to perform the DNS
Ø Two months of run time to compute a time interval of 20 ⁄𝐿 𝑈#
Ø Code is stable up to the CFL number of about 1.3
Ø At CFL = 1.3, the DNS would have taken about 40 days
Ø Flow statistics are gathered over 15 ⁄𝐿 𝑈#

9

Streamwise Variation of Grid Resolutions

10

§ Largest streamwise spacing
in wall units: 6 to 8 units

§ Largest spanwise spacing in
wall units: 4.5 units

§ Wall-normal spacing at wall:
0.4 to 0.95 units

§ Largest wall-normal spacing
around boundary layer edge:
about 10 units

Surface Pressure Coefficient Distribution &
Comparison with RANS

11

RANS calculations with
the Spalart-Allmaras
model were performed by
colleagues in separate
independent studies

The sense of streamwise
pressure gradient changes at
the foot, apex and tail of the
bump; this will trigger the
formation of internal layers

Determination of Mean Boundary Layer
Properties

Ø Spalart and Watmuff (JFM, 1993) proposed the following integrals based on
spanwise vorticity to compute boundary layer edge velocity & displacement and
momentum thicknesses for incompressible flow

12

𝑦$ is the wall-normal distance, 𝜔% is the mean spanwise vorticity

Determination of Mean Boundary Layer
Thickness

13

Velocity and F profiles
at the apex are shown

𝐹 = −𝑦"𝜔#
at ⁄𝑦" 𝐿 ≈ 0.015
𝐹 ≈ 0.02𝐹$%&

Extrapolation of velocity
at ⁄𝑦! 𝐿 ≈ 0.015 to wall
gives an estimate of 𝑈"
that agrees with the value
from vorticity integral
(credit is due Dr. Spalart)

Variation of Mean Boundary Layer Properties

Ø Flow goes through significant changes caused by pressure gradients

14

From left to right, the quantities
plotted:
̶ boundary layer thickness
̶ displacement thickness
̶ momentum thickness
̶ shape factor
̶ edge velocity
̶ surface pressure coefficient
̶ skin-friction coefficient

Skin-Friction Coefficient Distribution &
Comparison with RANS

15

RANS calculations predict much
higher peak skin friction levels
and more severe separation

As expected, RANS does
not detect relaminarization

The jump in the DNS 𝐶# near the
inflow is due to erroneous mean
inflow profile taken from RANS

Incipient or Very Weak Separation in
Decelerating Region

Ø Flow visualization shows incipient or very weak separation in the aft section

16

Contours denote the
instantaneous axial
velocity normalized
by reference velocity

Flow Relaminarization/Stabilization in
Accelerating Region

Ø Combination of low Reynolds number, strong favorable pressure gradient and
convex curvature leads to flow relaminarization/stabilization upstream of apex

17

Normalized total
velocity contours on
a near-wall plane
where 4 ≲ 𝑦!$ ≲ 6

𝑦!$ is the wall-normal
distance in wall units

Variation of Acceleration and
Relaminarization Parameters

Ø Variation of acceleration and relaminarization parameters (Δ3 and 𝐾):

18

than that of !. " consequently increases to a value of about 3.1 as # ! drops down to zero. As noted above, a brief
plateau in ", that nearly coincides with the secondary# ! peak, appears during the boundary layer growth. " becomes
as high as 3.4 in the short section where # ! goes slightly negative. That particular region contains a tiny patch of very
weakly-reversed flow near the wall but we do not expect the very limited extent of the reversed flow to have a notable
effect on the vorticity integrals.

The flow recovery from the incipient or very weak separation, marked by the rise in # ! , starts while the adverse
pressure gradient tapers down to a smaller value. Interestingly, $∗ starts its decrease shortly after the flow recovery
begins, at %/& ≈ 0.28, while ! continues its rise until %/& ≈ 0.38, where the pressure gradient changes from adverse
to mild favorable. Both thicknesses level off further downstream and start growing again as the pressure gradient
becomes nearly zero. The changes in $ occur at locations close enough to these particular stations. The rise in $ within
the aft region continues until %/& ≈ 0.3, followed by a slight decrease until %/& ≈ 0.4, which is then succeeded by
the growth in the recovery region. As will be seen later, the boundary layer in the decelerating region develops an
internal layer that looks much like a free shear layer; thus, the behavior of boundary layer quantities relative to one
another in the aft region may not precisely fit the norms of a more typical boundary layer. " drops down to a value of
about 1.35 by the time flow reaches %/& = 1. This value is within the typical range expected for zero pressure gradient
turbulent boundary layers. As stated earlier, '" follows the pressure gradient consistently in the whole domain. '"

starts increasing in the downstream recovery region once the pressure gradient becomes favorable again at %/& ≈ 0.38.

3. Further Examination of Strong Acceleration Region

We now examine the strongly accelerated flow over the first half of the speed bump in more detail. Figure 12 shows
the variation of two potentially useful parameters over this region. The first parameter is the acceleration parameter,
Δ# , and the second one is the relaminarization parameter, (. These parameters are defined as

Δ# = −
)

*+3
$

,-

,.
and (=

)

'2
"

,'"

,.
(4)

where) is the kinematic viscosity, * is the density, +$ is the wall friction velocity, - is the surface pressure, '" is the
boundary layer edge velocity, all of which are determined from the mean flow and . is the surface distance. Note that
Δ# accounts for the boundary layer wall region‖ because it incorporates the friction velocity, while (is solely based
on the boundary layer edge velocity and therefore cannot account for the wall region.

Fig. 12 Variation of acceleration and relaminarization parameters over the upstream half of speed bump.

‖Note that non-dimensionalization of Δ! would bring %"" into the denominator. An increase in the Reynolds number would lower &# , but

the product of the larger %"" and the smaller &3
in the denominator of Δ! would generally be greater than the corresponding product at the lower

Reynolds number, and can be estimated more precisely using the available skin-friction correlations. Hence, an increase in the Reynolds number
would require a stronger favorable pressure gradient, relative to the lower Reynolds number case, for Δ! to reach a certain threshold.

11

than that of !. " consequently increases to a value of about 3.1 as # ! drops down to zero. As noted above, a brief
plateau in ", that nearly coincides with the secondary# ! peak, appears during the boundary layer growth. " becomes
as high as 3.4 in the short section where # ! goes slightly negative. That particular region contains a tiny patch of very
weakly-reversed flow near the wall but we do not expect the very limited extent of the reversed flow to have a notable
effect on the vorticity integrals.

The flow recovery from the incipient or very weak separation, marked by the rise in # ! , starts while the adverse
pressure gradient tapers down to a smaller value. Interestingly, $∗ starts its decrease shortly after the flow recovery
begins, at %/& ≈ 0.28, while ! continues its rise until %/& ≈ 0.38, where the pressure gradient changes from adverse
to mild favorable. Both thicknesses level off further downstream and start growing again as the pressure gradient
becomes nearly zero. The changes in $ occur at locations close enough to these particular stations. The rise in $ within
the aft region continues until %/& ≈ 0.3, followed by a slight decrease until %/& ≈ 0.4, which is then succeeded by
the growth in the recovery region. As will be seen later, the boundary layer in the decelerating region develops an
internal layer that looks much like a free shear layer; thus, the behavior of boundary layer quantities relative to one
another in the aft region may not precisely fit the norms of a more typical boundary layer. " drops down to a value of
about 1.35 by the time flow reaches %/& = 1. This value is within the typical range expected for zero pressure gradient
turbulent boundary layers. As stated earlier, '" follows the pressure gradient consistently in the whole domain. '"

starts increasing in the downstream recovery region once the pressure gradient becomes favorable again at %/& ≈ 0.38.

3. Further Examination of Strong Acceleration Region

We now examine the strongly accelerated flow over the first half of the speed bump in more detail. Figure 12 shows
the variation of two potentially useful parameters over this region. The first parameter is the acceleration parameter,
Δ# , and the second one is the relaminarization parameter, (. These parameters are defined as

Δ# = −
)

*+3
$

,-

,.
and (=

)

'2
"

,'"

,.
(4)

where) is the kinematic viscosity, * is the density, +$ is the wall friction velocity, - is the surface pressure, '" is the
boundary layer edge velocity, all of which are determined from the mean flow and . is the surface distance. Note that
Δ# accounts for the boundary layer wall region‖ because it incorporates the friction velocity, while (is solely based
on the boundary layer edge velocity and therefore cannot account for the wall region.

Fig. 12 Variation of acceleration and relaminarization parameters over the upstream half of speed bump.

‖Note that non-dimensionalization of Δ! would bring %"" into the denominator. An increase in the Reynolds number would lower &# , but

the product of the larger %"" and the smaller &3
in the denominator of Δ! would generally be greater than the corresponding product at the lower

Reynolds number, and can be estimated more precisely using the available skin-friction correlations. Hence, an increase in the Reynolds number
would require a stronger favorable pressure gradient, relative to the lower Reynolds number case, for Δ! to reach a certain threshold.

11

𝜌 is the density
𝜈 is the kinematic viscosity
𝑢% is the friction velocity
𝑝 is the pressure
𝑠 is the surface distance
𝑈" is the edge velocity

Logarithmic Layer Breakdown in
Accelerating Region

19

Δ' = 0.018 at &
(≈ −0.19

Patel and Head (JFM,
1968) concluded that
“major departures” from
logarithmic layer occur
when Δ& exceeds the
threshold value of 0.018

The logarithmic layer has
nearly disappeared
where Δ& = 0.018

Mean Velocity Profiles in Accelerating Region

20

Runge-Kutta scheme [6] is used for the time integration. It takes 750000 time steps to compute a time interval of !/"∞.
The solution is filtered [3, 5] at every time step with a filtering parameter of # = 0.10. Note that # = 0 means that the
filter is off, while # = 1 means that the filter is in full effect. For the DNS, 48 NVIDIA Tesla V100 GPUs (each with
32 Gigabytes of global memory), located at the NASA Advanced Supercomputing Division at Ames Research Center†,
are used. Each GPU solves a grid block of 512× 320× 288 points. The DNS takes two months of run time to compute
a time interval of 20!/"∞. The initial numerical transients are driven out of the computational domain during the first
5!/"∞. Statistical data are gathered over the remaining 15!/"∞, which covers 8.33 physical domain flow-thru times.

Fig. 3 Near-wall grid spacings in wall units.

For the turbulent inflow generation, we employ the rescaling-recycling technique, discussed in Uzun and Malik [8].
The mean flow imposed at the inflow boundary of the present DNS is taken from the aforementioned incompressible
RANS solution. The mean boundary layer thickness on the inflow boundary is $!" ≈ 0.0046!. The distance between
the inflow and recycle planes is set to 15$!". The turbulent fluctuations extracted from the recycle plane are rescaled
and reintroduced at the inflow after applying a spanwise scramble. See Uzun and Malik [8, 9] for further details.
Figure 4 shows the inflow and recycle plane mean axial velocity profiles in wall units. As seen here, the inflow mean
profile taken from the RANS does not possess a logarithmic layer that is well represented by a von Kármán constant of
% = 0.4–0.41 and an intercept constant of & = 5.0–5.2. This is presumably due to the relatively low Reynolds number
of the present test case. The logarithmic layer is defined as: "+ = %−1 ln('+#) + &, where '+# = '#($/), "

+ = "/($,

'# is the wall-normal distance, " is the mean axial velocity, ($ =
√

*#/+ is the friction velocity, *# is the wall shear
stress, and + and), respectively, are the density and kinematic viscosity on the wall. Despite this shortcoming of the
RANS mean inflow profile, the turbulent boundary layer attains a more realistic mean state by the time it reaches the
recycle station. The recycle plane mean profile has a logarithmic layer that is matched well by % = 0.41 and & = 5.
The Reynolds number based on the local friction velocity and boundary layer thickness is ,-$ ≈ 350 at the recycle
station. We see that the logarithmic layer is rather small at this station because of the relatively low Reynolds number.

B. Simulation Results
We now discuss the simulation results. The main features of the flowfield are presented first, followed by a more

detailed investigation of the flow behavior over the upstream and downstream halves of the speed bump. Throughout
the discussion, we refer to the portion of the speed bump upstream of the apex as the first or the upstream half, and
the remaining portion as the second or the downstream half. The first half of the speed bump contains the strongly
accelerated flow region preceded by a relatively weak upstream adverse pressure gradient that becomes stronger toward
the foot of the bump, while the second half encompasses the deceleration due to adverse pressure gradient, incipient or
very weak separation, and downstream recovery regions. We make use of the data gathered from the DNS to examine
the various phenomena encountered in the flowfield.

†The GPU cluster contains 72 V100s total. Each V100 has a peak performance of 7.8 Tera-FLOPs per second in double precision.

4

Runge-Kutta scheme [6] is used for the time integration. It takes 750000 time steps to compute a time interval of !/"∞.
The solution is filtered [3, 5] at every time step with a filtering parameter of # = 0.10. Note that # = 0 means that the
filter is off, while # = 1 means that the filter is in full effect. For the DNS, 48 NVIDIA Tesla V100 GPUs (each with
32 Gigabytes of global memory), located at the NASA Advanced Supercomputing Division at Ames Research Center†,
are used. Each GPU solves a grid block of 512× 320× 288 points. The DNS takes two months of run time to compute
a time interval of 20!/"∞. The initial numerical transients are driven out of the computational domain during the first
5!/"∞. Statistical data are gathered over the remaining 15!/"∞, which covers 8.33 physical domain flow-thru times.

Fig. 3 Near-wall grid spacings in wall units.

For the turbulent inflow generation, we employ the rescaling-recycling technique, discussed in Uzun and Malik [8].
The mean flow imposed at the inflow boundary of the present DNS is taken from the aforementioned incompressible
RANS solution. The mean boundary layer thickness on the inflow boundary is $!" ≈ 0.0046!. The distance between
the inflow and recycle planes is set to 15$!". The turbulent fluctuations extracted from the recycle plane are rescaled
and reintroduced at the inflow after applying a spanwise scramble. See Uzun and Malik [8, 9] for further details.
Figure 4 shows the inflow and recycle plane mean axial velocity profiles in wall units. As seen here, the inflow mean
profile taken from the RANS does not possess a logarithmic layer that is well represented by a von Kármán constant of
% = 0.4–0.41 and an intercept constant of & = 5.0–5.2. This is presumably due to the relatively low Reynolds number
of the present test case. The logarithmic layer is defined as: "+ = %−1 ln('+#) + &, where '+# = '#($/), "

+ = "/($,

'# is the wall-normal distance, " is the mean axial velocity, ($ =
√

*#/+ is the friction velocity, *# is the wall shear
stress, and + and), respectively, are the density and kinematic viscosity on the wall. Despite this shortcoming of the
RANS mean inflow profile, the turbulent boundary layer attains a more realistic mean state by the time it reaches the
recycle station. The recycle plane mean profile has a logarithmic layer that is matched well by % = 0.41 and & = 5.
The Reynolds number based on the local friction velocity and boundary layer thickness is ,-$ ≈ 350 at the recycle
station. We see that the logarithmic layer is rather small at this station because of the relatively low Reynolds number.

B. Simulation Results
We now discuss the simulation results. The main features of the flowfield are presented first, followed by a more

detailed investigation of the flow behavior over the upstream and downstream halves of the speed bump. Throughout
the discussion, we refer to the portion of the speed bump upstream of the apex as the first or the upstream half, and
the remaining portion as the second or the downstream half. The first half of the speed bump contains the strongly
accelerated flow region preceded by a relatively weak upstream adverse pressure gradient that becomes stronger toward
the foot of the bump, while the second half encompasses the deceleration due to adverse pressure gradient, incipient or
very weak separation, and downstream recovery regions. We make use of the data gathered from the DNS to examine
the various phenomena encountered in the flowfield.

†The GPU cluster contains 72 V100s total. Each V100 has a peak performance of 7.8 Tera-FLOPs per second in double precision.

4

𝜈 is the kinematic viscosity
𝑢% is the friction velocity
𝑈 is the streamwise velocity
𝑦! is the wall distance

Velocity profiles take
shapes resembling those of
relaminarizing boundary
layers as the accelerated
flow approaches the apex

Surface Curvature Variation

21

Because of the
geometrical
symmetry with
respect to '

(
= 0,

surface curvature
variation is also
symmetric with
respect to '

(
= 0

Convex Surface Curvature Effect

22

𝑠) is the surface
distance measured
from the start of
convex curvature

⁄𝛿 𝑅 significantly
exceeds “mild”
convex curvature
value of ~0.01

Reynolds Stress Profiles at ⁄𝒙 𝑳 = −𝟎. 𝟑

23

The “knee point” emerging in the streamwise & spanwise stresses indicates an internal
layer triggered by the change from adverse to favorable pressure gradient at bump foot

Alignment of the “knee point” relative to the
peaks in the wall-normal and shear stresses

Emergence of a “knee point” at ⁄𝑦! 𝛿 ≈ 0.23
in the streamwise and spanwise stresses

Shear Stress and Velocity Profiles in
Accelerating Region

24

An inner stress
peak develops in
the internal layer,
but its growth is
hampered by
flow stabilization

Original outer
peak decays due
to reduction in
velocity gradient
in outer region by
flow acceleration

Mixing Suppression in Accelerating Region

Ø Significant reduction in wall-normal and spanwise Reynolds stresses

25

Shear Stress and Velocity Profiles in
Decelerating Region

26

Deceleration leads to the
formation of a buffer layer
between low- and high-
speed regions; this buffer
zone acts like a free shear
layer and can be viewed
as a new internal layer

Shear stress peak shifts
from the near-wall region
to the free shear layer,
which also contains the
normal stress peaks

Streamwise Reynolds Stresses in
Decelerating Region

27

Inner peak strengthens
first due to the retransition
to turbulence but weakens
as the flow decelerates; an
outer peak emerges in the
free shear layer region

Shear Stress and Velocity Profiles in
Recovery Region

28

The weakly favorable
pressure gradient in
recovery region reduces
the velocity gradient in the
free shear layer region;
shear and normal stress
peaks start to decay

Another internal layer
develops near the wall;
but the domain is not long
enough for the inner
stress peak to fully form

Streamwise Reynolds Stresses in Recovery
Region

29

Evolution of the inner peak in
streamwise stress is due to the
formation of new internal layer
in recovery region

Outer peak decays as the shear
layer portion gradually disappears
due to the weakly favorable
pressure gradient in recovery zone

Mean Velocity Profile Development in
Recovery Region

30

The logarithmic layer is still
in adjustment as the flow
nears the domain end:
§ further development

length is needed

Concluding Remarks

Ø Combination of low Reynolds number, favorable pressure gradient and convex
surface curvature leads to flow relaminarization/stabilization in the accelerating
region
§ Patel and Head’s threshold value of 0.018 for the acceleration parameter was found to

reasonably predict the breakdown of logarithmic layer in the accelerating region
§ As expected, RANS fails to detect this phenomenon

Ø Present DNS predicts incipient or very weak separation in the adverse pressure
gradient region
§ In comparison, RANS yields much stronger separation

Ø Internal layers form where the sense of streamwise pressure gradient changes
at the foot, apex and tail of the speed bump

31

Future and Ongoing Work

Ø We would like to repeat the DNS at the Reynolds number of 3.5 million :
§ 150 billion grid points for the domain span of 0.1𝐿
§ Considering a freestream Mach number of 0.3 (to reduce run times, resources are still limited)
§ Only feasible on Summit: DNS requires 1064 Summit nodes (or 6384 GPUs)
§ 0.6 million Summit node-hours (about 23.5 days of runtime) to run 13.5 ⁄𝐿 𝑈)

Ø Currently running a simulation at the Reynolds number of 2 million :
§ 10.2 billion grid points
§ Resolution approaches DNS in certain regions and wall-resolved LES elsewhere
§ Domain span of 0.08𝐿, freestream Mach number of 0.2
§ CPU code will take 50 days of run time for 10 ⁄𝐿 𝑈) using 20,000 Intel Skylake cores at NAS
§ GPU code would need 216 V100s (with 32 GB memory) for this grid, but NAS does not own

that many V100s at present
§ We are unable to use our GPU code for this simulation

32

Acknowledgments

Ø This work was sponsored by the NASA Transformational Tools and Technologies
Project of the Transformative Aeronautics Concepts Program under the
Aeronautics Research Mission Directorate

Ø The calculations were made possible by the computing resources provided by
the NASA High-End Computing Program through the NASA Advanced
Supercomputing Division at Ames Research Center

Ø This work also used resources of the Oak Ridge Leadership Computing Facility
(OLCF) at the Oak Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy

Ø We thank Dr. Philippe Spalart for valuable discussions
Ø Drs. Michael Strelets and Prahladh Iyer provided the RANS solutions

33

Further Questions or Comments?

Ø Questions and comments can be directed to:
§ Dr. Ali Uzun: ali.uzun@nasa.gov or ali.uzun@nianet.org
§ Dr. Mujeeb Malik: m.r.malik@nasa.gov

34

